The UvA-LINKER will give you a range of other options to find the full text of a publication (including a direct link to the full-text if it is located on another database on the internet).
De UvA-LINKER biedt mogelijkheden om een publicatie elders te vinden (inclusief een directe link naar de publicatie online als deze beschikbaar is in een database op het internet).

Zoekresultaten

Zoekopdracht: journal id: "astrophysicalxjournal"

AuteursE.M. Cackett, E.F. Brown, A. Cumming, N. Degenaar, J. Fridriksson, J. Homan, J.M. Miller, R. Wijnands
TitelA Change in the Quiescent X-Ray Spectrum of the Neutron Star Low-mass X-Ray Binary MXB 1659-29
TijdschriftAstrophysical Journal
Jaargang774
Jaar2013
Nummer2
Pagina's131-
ISSN0004637X
FaculteitFaculteit der Natuurwetenschappen, Wiskunde en Informatica
Instituut/afd.FNWI: Astronomical Institute Anton Pannekoek (IAP)
SamenvattingThe quasi-persistent neutron star low-mass X-ray binary MXB 1659–29 went into quiescence in 2001, and we have followed its quiescent X-ray evolution since. Observations over the first 4 yr showed a rapid drop in flux and temperature of the neutron star atmosphere, interpreted as cooling of the neutron star crust which had been heated during the 2.5 yr outburst. However, observations taken approximately 1400 and 2400 days into quiescence were consistent with each other, suggesting the crust had reached thermal equilibrium with the core. Here we present a new Chandra observation of MXB 1659–29 taken 11 yr into quiescence and 4 yr since the last Chandra observation. This new observation shows an unexpected factor of ~3 drop in count rate and change in spectral shape since the last observation, which cannot be explained simply by continued cooling. Two possible scenarios are that either the neutron star temperature has remained unchanged and there has been an increase in the column density, or, alternatively the neutron star temperature has dropped precipitously and the spectrum is now dominated by a power-law component. The first scenario may be possible given that MXB 1659–29 is a near edge-on system, and an increase in column density could be due to build-up of material in, and a thickening of, a truncated accretion disk during quiescence. But, a large change in disk height may not be plausible if standard accretion disk theory holds during quiescence. Alternatively, the disk may be precessing, leading to a higher column density during this latest observation.
Soort documentArtikel
Download
Document finderUvA-Linker