The UvA-LINKER will give you a range of other options to find the full text of a publication (including a direct link to the full-text if it is located on another database on the internet).
De UvA-LINKER biedt mogelijkheden om een publicatie elders te vinden (inclusief een directe link naar de publicatie online als deze beschikbaar is in een database op het internet).

Zoekresultaten

Zoekopdracht: journal id: "astrophysicalxjournal"

AuteursM. Kalamkar, M. van der Klis, P. Uttley, D. Altamirano, R. Wijnands
TitelSwift X-Ray Telescope Timing Observations of the Black Hole Binary SWIFT J1753.5-0127: Disk-diluted Fluctuations in the Outburst Peak
TijdschriftAstrophysical Journal
Jaargang766
Jaar2013
Nummer2
Pagina's89-
ISSN0004637X
FaculteitFaculteit der Natuurwetenschappen, Wiskunde en Informatica
Instituut/afd.FNWI: Astronomical Institute Anton Pannekoek (IAP)
SamenvattingAfter a careful analysis of the instrumental effects on the Poisson noise to demonstrate the feasibility of detailed stochastic variability studies with the Swift X-Ray Telescope (XRT), we analyze the variability of the black hole X-ray binary SWIFT J1753.5–0127 in all XRT observations during 2005-2010. We present the evolution of the power spectral components along the outburst in two energy bands: soft (0.5-2 keV) and hard (2-10 keV), and in the hard band we find results consistent with those from the Rossi X-Ray Timing Explorer (RXTE). The advantage of the XRT is that we can also explore the soft band not covered by RXTE. The source has previously been suggested to host an accretion disk extending down to close to the black hole in the low hard state, and to show low-frequency variability in the soft-band intrinsic to this disk. Our results are consistent with this, with stronger low-frequency variability at low intensities in the soft than in the hard band. From our analysis, we are able to present the first measurements of the soft-band variability in the peak of the outburst. We find the soft band to be less variable than the hard band, especially at high frequencies, opposite to what is seen at low intensity. Both results can be explained within the framework of a simple two emission-region model where the hot flow is more variable in the peak of the outburst and the disk is more variable at low intensities.
Soort documentArtikel
Download
Document finderUvA-Linker