The UvA-LINKER will give you a range of other options to find the full text of a publication (including a direct link to the full-text if it is located on another database on the internet).
De UvA-LINKER biedt mogelijkheden om een publicatie elders te vinden (inclusief een directe link naar de publicatie online als deze beschikbaar is in een database op het internet).

Search results

Query: journal id: "astrophysicalxjournal"

AuthorsV. Silva Aguirre, L. Casagrande, S. Basu, T.L. Campante, W.J. Chaplin, D. Huber, A. Miglio, A.M. Serenelli, J. Ballot, T.R. Bedding, J. Christensen-Dalsgaard, O.L. Creevey, Y. Elsworth, R.A. Garcia, R.L. Gilliland, S. Hekker, H. Kjeldsen, S. Mathur, T.S. Metcalfe, M.J.P.F.G. Monteiro, B. Mosser, M.H. Pinsonneault, D. Stello, A. Weiss, P. Tenenbaum, J.D. Twicken, K. Uddin
TitleVerifying Asteroseismically Determined Parameters of Kepler Stars Using Hipparcos Parallaxes: Self-consistent Stellar Properties and Distances
JournalAstrophysical Journal
Volume757
Year2012
Issue1
Pages99-
ISSN0004637X
FacultyFaculty of Science
Institute/dept.FNWI: Astronomical Institute Anton Pannekoek (IAP)
AbstractAccurately determining the properties of stars is of prime importance for characterizing stellar populations in our Galaxy. The field of asteroseismology has been thought to be particularly successful in such an endeavor for stars in different evolutionary stages. However, to fully exploit its potential, robust methods for estimating stellar parameters are required and independent verification of the results is mandatory. With this purpose, we present a new technique to obtain stellar properties by coupling asteroseismic analysis with the InfraRed Flux Method. By using two global seismic observables and multi-band photometry, the technique allows us to obtain masses, radii, effective temperatures, bolometric fluxes, and hence distances for field stars in a self-consistent manner. We apply our method to 22 solar-like oscillators in the Kepler short-cadence sample, that have accurate Hipparcos parallaxes. Our distance determinations agree to better than 5%, while measurements of spectroscopic effective temperatures and interferometric radii also validate our results. We briefly discuss the potential of our technique for stellar population analysis and models of Galactic Chemical Evolution.
Document typeArticle
Download
Document finderUvA-Linker