The UvA-LINKER will give you a range of other options to find the full text of a publication (including a direct link to the full-text if it is located on another database on the internet).
De UvA-LINKER biedt mogelijkheden om een publicatie elders te vinden (inclusief een directe link naar de publicatie online als deze beschikbaar is in een database op het internet).

Zoekresultaten

Zoekopdracht: faculteit: "FNWI" en publicatiejaar: "2012"

AuteursH.C.P. Matthijs, P.M. Visser, B. Reeze, J. Meeuse, P.C. Slot, G. Wijn, R. Talens, J. Huisman
TitelSelective suppression of harmful cyanobacteria in an entire lake with hydrogen peroxide
TijdschriftWater Research
Jaargang46
Jaar2012
Nummer5
Pagina's1460-1472
ISSN00431354
FaculteitFaculteit der Natuurwetenschappen, Wiskunde en Informatica
Instituut/afd.FNWI: Institute for Biodiversity and Ecosystem Dynamics (IBED)
SamenvattingAlthough harmful cyanobacteria form a major threat to water quality, few methods exist for the rapid suppression of cyanobacterial blooms. Since laboratory studies indicated that cyanobacteria are more sensitive to hydrogen peroxide (H2O2) than eukaryotic phytoplankton, we tested the application of H2O2 in natural waters. First, we exposed water samples from a recreational lake dominated by the toxic cyanobacterium Planktothrix agardhii to dilute H2O2. This reduced the photosynthetic vitality by more than 70% within a few hours. Next, we installed experimental enclosures in the lake, which revealed that H2O2 selectively killed the cyanobacteria without major impacts on eukaryotic phytoplankton, zooplankton, or macrofauna. Based on these tests, we introduced 2 mg L−1 1 (60 mM) of H2O2 homogeneously into the entire water volume of the lake with a special dispersal device, called the water harrow. The cyanobacterial population as well as the microcystin concentration collapsed by 99% within a few days. Eukaryotic phytoplankton (including green algae, cryptophytes, chrysophytes and diatoms), zooplankton and macrofauna remained largely unaffected. Following the treatment, cyanobacterial abundances remained low for 7 weeks. Based on these results, we propose the use of dilute H2O2 for the selective elimination of harmful cyanobacteria from recreational lakes and drinking water reservoirs, especially when immediate action is urgent and/or cyanobacterial control by reduction of eutrophication is currently not feasible. A key advantage of this method is that the added H2O2 degrades to water and oxygen within a few days, and thus leaves no longterm chemical traces in the environment.
Soort documentArtikel
Document finderUvA-Linker