The UvA-LINKER will give you a range of other options to find the full text of a publication (including a direct link to the full-text if it is located on another database on the internet).
De UvA-LINKER biedt mogelijkheden om een publicatie elders te vinden (inclusief een directe link naar de publicatie online als deze beschikbaar is in een database op het internet).

Zoekresultaten

Zoekopdracht: faculteit: "FNWI" en publicatiejaar: "2012"

AuteursG.K.D. de Vries, M. van Someren
TitelMachine learning for vessel trajectories using compression, alignments and domain knowledge
TijdschriftExpert Systems With Applications
Jaargang39
Jaar2012
Nummer18
Pagina's13426-13439
ISSN09574174
FaculteitFaculteit der Natuurwetenschappen, Wiskunde en Informatica
Instituut/afd.FNWI: Informatics Institute (II)
SamenvattingIn this paper we present a machine learning framework to analyze moving object trajectories from maritime vessels. Within this framework we perform the tasks of clustering, classification and outlier detection with vessel trajectory data. First, we apply a piecewise linear segmentation method to the trajectories to compress them. We adapt an existing technique to better retain stop and move information and show the better performance of our method with experimental results. Second, we use a similarity based approach to perform the clustering, classification and outlier detection tasks using kernel methods. We present experiments that investigate different alignment kernels and the effect of piecewise linear segmentation in the three different tasks. The experimental results show that compression does not negatively impact task performance and greatly reduces computation time for the alignment kernels. Finally, the alignment kernels allow for easy integration of geographical domain knowledge. In experiments we show that this added domain knowledge enhances performance in the clustering and classification tasks
Soort documentArtikel
Document finderUvA-Linker