The UvA-LINKER will give you a range of other options to find the full text of a publication (including a direct link to the full-text if it is located on another database on the internet).
De UvA-LINKER biedt mogelijkheden om een publicatie elders te vinden (inclusief een directe link naar de publicatie online als deze beschikbaar is in een database op het internet).

Zoekresultaten

Zoekopdracht: faculteit: "FNWI" en publicatiejaar: "2012"

AuteursJ.F.P. Kooij, G. Englebienne, D.M. Gavrila
TitelA non-parametric hierarchical model to discover behavior dynamics from tracks
Boek/bron titelComputer Vision - ECCV 2012: 12th European Conference on Computer Vision, Florence, Italy, October 7-12, 2012, Proceedings, Part VI
Auteurs/EditorsA. Fitzgibbon, S. Lazebnik, P. Perona, Y. Sato, C. Schmid
UitgeverSpringer
PlaatsBerlin
Jaar2012
Pagina's270-283
ISBN9783642337826
FaculteitFaculteit der Natuurwetenschappen, Wiskunde en Informatica
Instituut/afd.FNWI: Informatics Institute (II)
SamenvattingWe present a novel non-parametric Bayesian model to jointly discover the dynamics of low-level actions and high-level behaviors of tracked people in open environments. Our model represents behaviors as Markov chains of actions which capture high-level temporal dynamics. Actions may be shared by various behaviors and represent spatially localized occurrences of a person’s low-level motion dynamics using Switching Linear Dynamics Systems. Since the model handles real-valued features directly, we do not lose information by quantizing measurements to ‘visual words’ and can thus discover variations in standing, walking and running without discrete thresholds. We describe inference using Gibbs sampling and validate our approach on several artificial and real-world tracking datasets. We show that our model can distinguish relevant behavior patterns that an existing state-of-the-art method for hierarchical clustering cannot.
Soort documentHoofdstuk
Document finderUvA-Linker