The UvA-LINKER will give you a range of other options to find the full text of a publication (including a direct link to the full-text if it is located on another database on the internet).
De UvA-LINKER biedt mogelijkheden om een publicatie elders te vinden (inclusief een directe link naar de publicatie online als deze beschikbaar is in een database op het internet).

Zoekresultaten

Zoekopdracht: faculteit: "FNWI" en publicatiejaar: "2010"

AuteursM. Bron, K. Balog, M. de Rijke
TitelRanking related entities: components and analyses
Boek/bron titelCIKM '10: 19th ACM International Conference on Information and Knowledge Management, Toronto, Canada
UitgeverACM
PlaatsNew York
Jaar2010
Pagina's1079-1088
ISBN9781450300995
FaculteitFaculteit der Natuurwetenschappen, Wiskunde en Informatica
Instituut/afd.FNWI: Informatics Institute (II)
SamenvattingRelated entity finding is the task of returning a ranked list of homepages of relevant entities of a specified type that need to engage in a given relationship with a given source entity. We propose a framework for addressing this task and perform a detailed analysis of four core components; co-occurrence models, type filtering, context modeling and homepage finding. Our initial focus is on recall. We analyze the performance of a model that only uses co-occurrence statistics. While this method identifies the potential set of related entities, it fails to rank them effectively. Two types of error emerge: (1) entities of the wrong type pollute the ranking and (2) while somehow associated to the source entity, some retrieved entities do not engage in the right relation with it. To address (1), we add type filtering based on category information available in Wikipedia. To correct for (2), we complement our related entity finding method with contextual information, represented as language models derived from documents in which source and target entities co-occur. To complete the pipeline, we find homepages of top ranked entities by combining a language modeling approach with heuristics based on Wikipedia's external links. Our method achieves very high recall scores on the end-to-end task, providing a solid starting point for expanding our focus to improve precision. Our framework can effectively incorporate additional heuristics and these extensions lead to state-of-the-art performance.
Soort documentHoofdstuk
Document finderUvA-Linker