The UvA-LINKER will give you a range of other options to find the full text of a publication (including a direct link to the full-text if it is located on another database on the internet).
De UvA-LINKER biedt mogelijkheden om een publicatie elders te vinden (inclusief een directe link naar de publicatie online als deze beschikbaar is in een database op het internet).


Zoekopdracht: faculteit: "FNWI" en publicatiejaar: "2009"

AuteursM. Bílková, D. de Jongh, J.J. Joosten
TitelInterpretability in PRA
TijdschriftAnnals of Pure and Applied Logic
FaculteitFaculteit der Natuurwetenschappen, Wiskunde en Informatica
Instituut/afd.FNWI: Institute for Logic, Language and Computation (ILLC)
SamenvattingIn this paper, we study IL(PRA), the interpretability logic of PRA. As PRA is neither an essentially reflexive theory nor finitely axiomatizable, the two known arithmetical completeness results do not apply to PRA: IL(PRA) is not ILM or ILP. IL(PRA) does, of course, contain all the principles known to be part of IL(All), the interpretability logic of the principles common to all reasonable arithmetical theories. In this paper, we take two arithmetical properties of PRA and see what their consequences in the modal logic IL(PRA) are. These properties are reflected in the so-called Beklemishev Principle B, and Zambella's Principle Z, neither of which is a part of IL(All). Both principles and their interrelation are submitted to a modal study. In particular, we prove a frame condition for B. Moreover, we prove that Z follows from a restricted form of B. Finally, we give an overview of the known relationships of IL(PRA) to important other interpretability principles.
Soort documentArtikel
Document finderUvA-Linker