The UvA-LINKER will give you a range of other options to find the full text of a publication (including a direct link to the full-text if it is located on another database on the internet).
De UvA-LINKER biedt mogelijkheden om een publicatie elders te vinden (inclusief een directe link naar de publicatie online als deze beschikbaar is in een database op het internet).

Zoekresultaten

Zoekopdracht: faculteit: "FNWI" en publicatiejaar: "2007"

AuteursK. Malakpoor, E.F. Kaasschieter, J.M. Huyghe
TitelMathematical modelling and numerical solution of swelling of cartilaginous tissues. Part I: Modelling of incompressible charged porous media
TijdschriftModélisation Mathématique et Analyse Numérique
Jaargang41
Jaar2007
Nummer4
Pagina's661-678
ISSN0764583X
FaculteitFaculteit der Natuurwetenschappen, Wiskunde en Informatica
Instituut/afd.FNWI: Korteweg-de Vries Institute for Mathematics (KdVI)
SamenvattingAbstract

The swelling and shrinkage of biological tissues are modelled by a four-component mixture theory in which a deformable and charged porous medium is saturated with a fluid with dissolved ions. Four components are defined: solid, liquid, cations and anions. The aim of this paper is the construction of the Lagrangian model of the four-component system. It is shown that, with the choice of Lagrangian description of the solid skeleton, the motion of the other components can be described in terms of Lagrangian initial system of the solid skeleton as well. Such an approach has a particularly important bearing on computer-aided calculations. Balance laws are derived for each component and for the whole mixture. In cooperation of the second law of thermodynamics, the constitutive equations are given. This theory results in a coupled system of nonlinear parabolic differential equations together with an algebraic constraint for electroneutrality. In this model, it is desirable to obtain an accurate approximation of the fluid flow and ions flow. Such an accurate approximation can be determined by the mixed finite element method. Part II is devoted to this task.

Mathematics Subject Classification. 76S05, 74B05, 74F10

Key words: Mixture theory, porous media, hydrated soft tissue.
Soort documentArtikel
Document finderUvA-Linker