The UvA-LINKER will give you a range of other options to find the full text of a publication (including a direct link to the full-text if it is located on another database on the internet).
De UvA-LINKER biedt mogelijkheden om een publicatie elders te vinden (inclusief een directe link naar de publicatie online als deze beschikbaar is in een database op het internet).

Zoekresultaten

Zoekopdracht: faculteit: "FMG" en publicatiejaar: "2011"

AuteursL. Waldorp, I. Christoffels, V. van de Ven
TitelEffective connectivity of fMRI data using ancestral graph theory: dealing with missing regions
TijdschriftNeuroImage
Jaargang54
Jaar2011
Nummer4
Pagina's2695-2705
ISSN10538119
FaculteitFaculteit der Maatschappij- en Gedragswetenschappen
Instituut/afd.FMG: Psychology Research Institute
SamenvattingMost of the current methods to assess effective connectivity from functional magnetic resonance imaging (fMRI) rely on the assumption that all relevant brain regions are entered into the analysis. If this assumption is untenable, which we believe is most often the case, then spurious connections between brain regions can appear. In this paper we propose to use an ancestral graph to model connectivity, which provides a way to avoid spurious connections. The ancestral graph is determined from trial-by-trial variation and not from the time series. A random effects model is defined for ancestral graphs which allows for individual differences in terms of graph parameters (e.g., connection strength). Procedures for model selection, model fit, and hypothesis testing of ancestral graphs are proposed. The hypothesis test can be used to find differences in connection strength between, for example, conditions. Monte Carlo simulations show that the ancestral graph is appropriate to model connectivity from fMRI condition specific trial data. To assess the accuracy further, the proposed method is applied to real fMRI data to determine how brain regions interact during speech monitoring.
Soort documentArtikel
Document finderUvA-Linker