The UvA-LINKER will give you a range of other options to find the full text of a publication (including a direct link to the full-text if it is located on another database on the internet).
De UvA-LINKER biedt mogelijkheden om een publicatie elders te vinden (inclusief een directe link naar de publicatie online als deze beschikbaar is in een database op het internet).


Zoekopdracht: faculteit: "FEB" en publicatiejaar: "2003"

AuteurM.J.G. Bun
TitelBias Correction in the Dynamic Panel Data Model with a Nonscalar Disturbance Covariance Matrix
TijdschriftEconometric Reviews
FaculteitFaculteit Economie en Bedrijfskunde
Instituut/afd.FEB: Amsterdam School of Economics Research Institute (ASE-RI)
SamenvattingApproximation formulae are developed for the bias of ordinary and generalized Least Squares Dummy Variable (LSDV) estimators in dynamic panel data models. Results from Kiviet [Kiviet, J. F. (1995), on bias, inconsistency, and efficiency of various estimators in dynamic panel data models, J. Econometrics68:53–78; Kiviet, J. F. (1999), Expectations of expansions for estimators in a dynamic panel data model: some results for weakly exogenous regressors, In: Hsiao, C., Lahiri, K., Lee, L‐F., Pesaran, M. H., eds., Analysis of Panels and Limited Dependent Variables, Cambridge: Cambridge University Press, pp. 199–225] are extended to higher‐order dynamic panel data models with general covariance structure. The focus is on estimation of both short‐ and long‐run coefficients. The results show that proper modelling of the disturbance covariance structure is indispensable. The bias approximations are used to construct bias corrected estimators which are then applied to quarterly data from 14 European Union countries. Money demand functions for M1, M2 and M3 are estimated for the EU area as a whole for the period 1991: I–1995: IV. Significant spillovers between countries are found reflecting the dependence of domestic money demand on foreign developments. The empirical results show that in general plausible long‐run effects are obtained by the bias corrected estimators. Moreover, finite sample bias, although of moderate magnitude, is present underlining the importance of more refined estimation techniques. Also the efficiency gains by exploiting the heteroscedasticity and cross‐correlation patterns between countries are sometimes considerable.
Soort documentArtikel
Document finderUvA-Linker