The UvA-LINKER will give you a range of other options to find the full text of a publication (including a direct link to the full-text if it is located on another database on the internet).
De UvA-LINKER biedt mogelijkheden om een publicatie elders te vinden (inclusief een directe link naar de publicatie online als deze beschikbaar is in een database op het internet).

Zoekresultaten

Zoekopdracht: faculteit: "ACTA" en publicatiejaar: "2009"

AuteursF. Keulemans, L.V.J. Lassilla, S. Garoushi, P.K. Vallittu, C.J. Kleverlaan, A.J. Feilzer
TitelThe influence of framework design on the load-bearing capacity of laboratory-made inlay-retained fibre-reinforced composite fixed dental prostheses
TijdschriftJournal of Biomechanics
Jaargang42
Jaar2009
Nummer7
Pagina's844-849
ISSN00219290
FaculteitACTA
SamenvattingDelamination of the veneering composite is frequently encountered with fibre-reinforced composite (FRC) fixed dental prosthesis (FDPs). The aim of this study is to evaluate the influence of framework design on the load-bearing capacity of laboratory-made three-unit inlay-retained FRC-FDPs. Inlay-retained FRC-FDPs replacing a lower first molar were constructed. Seven framework designs were evaluated: PFC, made of particulate filler composite (PFC) without fibre-reinforcement; FRC1, one bundle of unidirectional FRC; FRC2, two bundles of unidirectional FRC; FRC3, two bundles of unidirectional FRC covered by two pieces of short unidirectional FRC placed perpendicular to the main framework; SFRC1, two bundles of unidirectional FRC covered by new experimental short random-orientated FRC (S-FRC) and veneered with 1.5 mm of PFC; SFRC2, completely made of S-FRC; SFRC3, two bundles of unidirectional FRC covered by S-FRC. Load-bearing capacity was determined for two loading conditions (n=6): central fossa loading and buccal cusp loading. FRC-FDPs with a modified framework design made of unidirectional FRC and S-FRC exhibited a significant higher load-bearing capacity (p<0.05) (927±74 N) than FRC-FDPs with a conventional framework design (609±119 N) and PFC-FDPs (702±86 N). Central fossa loading allowed significant higher load-bearing capacities than buccal cusp loading. This study revealed that all S-FRC frameworks exhibited comparable or higher load-bearing capacity in comparison to an already established improved framework design. So S-FRC seems to be a viable material for improving the framework of FRC-FDPs. Highest load-bearing capacity was observed with FRC frameworks made of a combination of unidirectional FRC and S-FRC.
Soort documentArtikel
Document finderUvA-Linker