The UvA-LINKER will give you a range of other options to find the full text of a publication (including a direct link to the full-text if it is located on another database on the internet).
De UvA-LINKER biedt mogelijkheden om een publicatie elders te vinden (inclusief een directe link naar de publicatie online als deze beschikbaar is in een database op het internet).

Zoekresultaten

Zoekopdracht: faculteit: "ACTA" en publicatiejaar: "2008"

AuteursP.W.J. de Groot, E.A. Kraneveld, Q.Y. Yin, H.L. Dekker, U. Groß, W. Crielaard, C.G. de Koster, O. Bader, F.M. Klis, M. Weig
TitelThe cell wall of the human pathogen Candida glabrata: differential incorporation of novel adhesin-like wall proteins
TijdschriftEukaryotic Cell
Jaargang7
Jaar2008
Nummer11
Pagina's1951-1964
ISSN15359778
FaculteitFaculteit der Natuurwetenschappen, Wiskunde en Informatica
AMC-UvA
ACTA
Instituut/afd.FNWI: Swammerdam Institute for Life Sciences (SILS)
SamenvattingThe cell wall of the human pathogen Candida glabrata governs initial host-pathogen interactions that underlie the establishment of fungal infections. With the aim of identifying species-specific features that may directly relate to its virulence, we have investigated the cell wall of C. glabrata using a multidisciplinary approach that combines microscopy imaging, biochemical studies, bioinformatics, and tandem mass spectrometry. Electron microscopy revealed a bilayered wall structure in which the outer layer is packed with mannoproteins. Biochemical studies showed that C. glabrata walls incorporate 50% more protein than Saccharomyces cerevisiae walls and, consistent with this, have a higher mannose/glucose ratio. Evidence is presented that C. glabrata walls contain glycosylphosphatidylinositol (GPI) proteins, covalently bound to the wall 1,6-β-glucan, as well as proteins linked through a mild-alkali-sensitive linkage to 1,3-β-glucan. A comprehensive genome-wide in silico inspection showed that in comparison to other fungi, C. glabrata contains an exceptionally large number, 67, of genes encoding adhesin-like GPI proteins. Phylogenetically these adhesin-like proteins form different clusters, one of which is the lectin-like EPA family. Mass spectrometric analysis identified 23 cell wall proteins, including 4 novel adhesin-like proteins, Awp1/2/3/4, and Epa6, which is involved in adherence to human epithelia and biofilm formation. Importantly, the presence of adhesin-like proteins in the wall depended on the growth stage and on the genetic background used, and this was reflected in alterations in adhesion capacity and cell surface hydrophobicity. We propose that the large repertoire of adhesin(-like) genes of C. glabrata contributes to its adaptability and virulence.
Soort documentArtikel
Document finderUvA-Linker